Block Toeplitz Operators with Frequency- Modulated Semi-almost Periodic Symbols

نویسنده

  • A. BÖTTCHER
چکیده

This paper is concerned with the influence of frequency modulation on the semiFredholm properties of Toeplitz operators with oscillating matrix symbols. The main results give conditions on an orientation-preserving homeomorphism α of the real line that ensure the following: if b belongs to a certain class of oscillating matrix functions (periodic, almost periodic, or semi-almost periodic matrix functions) and the Toeplitz operator generated by the matrix function b(x) is semi-Fredholm, then the Toeplitz operator with the matrix symbol b(α(x)) is also semi-Fredholm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Factorization of Almost Periodic Matrix Functions of Several Variables and Toeplitz Operators

We study connections between operator theoretic properties of Toeplitz operators acting on suitable Besikovitch spaces and factorizations of their symbols which are matrix valued almost periodic functions of several real variables. Among other things, we establish the existence of a twisted canonical factorization for locally sectorial symbols, and characterize one-sided invertibility of Toepli...

متن کامل

Fredholmness and Invertibility of Toeplitz Operators with Matrix Almost Periodic Symbols

We consider Toeplitz operators with symbols that are almost periodic matrix functions of several variables. It is shown that under certain conditions on the group generated by the Fourier support of the symbol, a Toeplitz operator is Fredholm if and only if it is invertible.

متن کامل

ar X iv : m at h / 05 11 12 7 v 1 [ m at h . FA ] 5 N ov 2 00 5 Factorization theory for Wiener - Hopf plus Hankel operators with almost periodic symbols

A factorization theory is proposed for Wiener-Hopf plus Hankel operators with almost periodic Fourier symbols. We introduce a factorization concept for the almost periodic Fourier symbols such that the properties of the factors will allow corresponding operator factorizations. Conditions for left, right, or both-sided invertibility of the Wiener-Hopf plus Hankel operators are therefore obtained...

متن کامل

The Semi-commutator of Toeplitz Operators on the Bidisc

In this paper we characterize when the semi-commutator TfTg − Tfg of two Toeplitz operators Tf and Tg on the Hardy space of the bidisc is zero. We also show that there is no nonzero finite rank semi-commutator on the bidisc. Furthermore explicit examples of compact semi-commutators with symbols continuous on the bitorus T 2 are given.

متن کامل

Multiblock Problems for Almost Periodic Matrix Functions of Several Variables

In this paper we solve positive and contractive multiblock problems in the Wiener algebra of almost periodic functions of several variables. We thus generalize the classical four block problem that appears in robust control in many ways. The necessary and sufficient conditions are in terms of appropriate Toeplitz (positive case) and Hankel operators (contractive case) on Besikovitch space. In a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002